Pandas拼接(Concat)操作的使用方法和示例代码

分类:知识百科 日期: 点击:0

Pandas拼接(Concat)操作是Pandas中常用的数据操作,它可以将多个DataFrame对象拼接在一起,构成一个新的DataFrame对象。Pandas拼接操作的使用方法如下:

1. 使用pandas.concat()函数

pandas.concat()函数接受一个列表或字典作为参数,列表中元素或字典中键值对应的值可以是DataFrame对象,也可以是Series对象,用于拼接。

import pandas as pd

# 定义DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'C': ['C0', 'C1', 'C2', 'C3'],
                     'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                     'B': ['B4', 'B5', 'B6', 'B7'],
                     'C': ['C4', 'C5', 'C6', 'C7'],
                     'D': ['D4', 'D5', 'D6', 'D7']},
                    index=[4, 5, 6, 7])

df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                     'B': ['B8', 'B9', 'B10', 'B11'],
                     'C': ['C8', 'C9', 'C10', 'C11'],
                     'D': ['D8', 'D9', 'D10', 'D11']},
                    index=[8, 9, 10, 11])

# 拼接
result = pd.concat([df1, df2, df3])
print(result)

2. 使用pandas.append()函数

pandas.append()函数接受一个DataFrame对象作为参数,用于拼接。

import pandas as pd

# 定义DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'C': ['C0', 'C1', 'C2', 'C3'],
                     'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                     'B': ['B4', 'B5', 'B6', 'B7'],
                     'C': ['C4', 'C5', 'C6', 'C7'],
                     'D': ['D4', 'D5', 'D6', 'D7']},
                    index=[4, 5, 6, 7])

# 拼接
result = df1.append(df2)
print(result)

3. 使用pandas.join()函数

pandas.join()函数接受一个DataFrame对象作为参数,用于拼接。

import pandas as pd

# 定义DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'C': ['C0', 'C1', 'C2', 'C3'],
                     'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                     'B': ['B4', 'B5', 'B6', 'B7'],
                     'C': ['C4', 'C5', 'C6', 'C7'],
                     'D': ['D4', 'D5', 'D6', 'D7']},
                    index=[4, 5, 6, 7])

# 拼接
result = df1.join(df2)
print(result)

4. 使用pandas.merge()函数

pandas.merge()函数接受两个DataFrame对象作为参数,用于拼接。

import pandas as pd

# 定义DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'C': ['C0', 'C1', 'C2', 'C3'],
                     'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                     'B': ['B4', 'B5', 'B6', 'B7'],
                     'C': ['C4', 'C5', 'C6', 'C7'],
                     'D': ['D4', 'D5', 'D6', 'D7']},
                    index=[4, 5, 6, 7])

# 拼接
result = pd.merge(df1, df2)
print(result)

上面的示例代码中,使用pandas.concat()、pandas.append()、pandas.join()和pandas.merge()函数分别实现了Pandas拼接(Concat)操作,可以根据实际需要来选择使用哪种方法。

标签:

版权声明

1. 本站所有素材,仅限学习交流,仅展示部分内容,如需查看完整内容,请下载原文件。
2. 会员在本站下载的所有素材,只拥有使用权,著作权归原作者所有。
3. 所有素材,未经合法授权,请勿用于商业用途,会员不得以任何形式发布、传播、复制、转售该素材,否则一律封号处理。
4. 如果素材损害你的权益请联系客服QQ:77594475 处理。