Pandas拼接(Concat)操作是Pandas中常用的数据操作,它可以将多个DataFrame对象拼接在一起,构成一个新的DataFrame对象。Pandas拼接操作的使用方法如下:
1. 使用pandas.concat()函数
pandas.concat()函数接受一个列表或字典作为参数,列表中元素或字典中键值对应的值可以是DataFrame对象,也可以是Series对象,用于拼接。
import pandas as pd # 定义DataFrame df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], 'B': ['B8', 'B9', 'B10', 'B11'], 'C': ['C8', 'C9', 'C10', 'C11'], 'D': ['D8', 'D9', 'D10', 'D11']}, index=[8, 9, 10, 11]) # 拼接 result = pd.concat([df1, df2, df3]) print(result)
2. 使用pandas.append()函数
pandas.append()函数接受一个DataFrame对象作为参数,用于拼接。
import pandas as pd # 定义DataFrame df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) # 拼接 result = df1.append(df2) print(result)
3. 使用pandas.join()函数
pandas.join()函数接受一个DataFrame对象作为参数,用于拼接。
import pandas as pd # 定义DataFrame df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) # 拼接 result = df1.join(df2) print(result)
4. 使用pandas.merge()函数
pandas.merge()函数接受两个DataFrame对象作为参数,用于拼接。
import pandas as pd # 定义DataFrame df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) # 拼接 result = pd.merge(df1, df2) print(result)
上面的示例代码中,使用pandas.concat()、pandas.append()、pandas.join()和pandas.merge()函数分别实现了Pandas拼接(Concat)操作,可以根据实际需要来选择使用哪种方法。