Delta Power Electronics Center
Basic Control for Power Electronics
--1--
• Andrew Zhang
• Dr. Jianping Ying
DPEC Shanghai
2003-06-06
Basic Control for Power Electronics
Delta Power Electronics Center
Basic Control for Power Electronics
--2--
Contents
1) Basic concepts and classifications
� State Space Method
� PWM Switching Method
� CCM
� DCM
2) Design methods
� Voltage loop
� Peak current
� Average current
Delta Power Electronics Center
Basic Control for Power Electronics
--3--
Benefits of modeling technology
� help to catch on the inherent essence.
� help to guide the design of close-loop.
Delta Power Electronics Center
Basic Control for Power Electronics
--4--
Basic Model of Power Electronics System
sL
sC
1
V0
I0
i
∆
DTs
v
∆
v
i
Little ripple approximation
0
0
0
I
i
I
i
I
I
<<
∆
≅
∆
+
=
V
D
D
V
D
V
⋅
=
⋅
−
+
⋅
=
0
)
1(
0
0
0
V
v
V
v
V
V
<<
∆
≅
∆
+
=
Weighting & Averaging
I
D
D
I
D
I
⋅
−
=
⋅
+
⋅
−
=
)
1(
0
)
1(
Inductor and Capacitor determine the n-order.
CCM
CCM
Delta Power Electronics Center
Basic Control for Power Electronics
--5--
1. SSM(State
State--Space Method)
Space Method): commonly and widely used.
Classifications of Modeling
3. SIM
SIM(Switch Inductor Model):
(Switch Inductor Model):
can be implemented us
can be implemented using
ing Pspice
Pspice.(ignored here)
.(ignored here)
4. HFNM(High Frequency Network Method):
High Frequency Network Method):
can be implemented us
can be implemented using
ing Pspice
Pspice.(ignored here)
.(ignored here)
5. Others
2. PWM Switch
PWM Switch: Suits for
: Suits for Pspice
Pspice simulation directly.
simulation directly.
Delta Power Electronics Center
Basic Control for Power Electronics
--6--
?? How to model the topology of PE
Weighting & Averagingare the right ways to implement.
Causes:
� the PE topologies generally belong to non-linear system.
� hard to model that kinds of topologies.
� linear extension at ONE point is ok.
D
V
Delta Power Electronics Center
Basic Control for Power Electronics
--7--
1) Basic SSM(State
State--Space Method)
Space Method)
Overview: There are two groups of state equations in CCM mode.
u
B
x
A
x
1
1 +
=
&
u
B
x
A
x
2
2 +
=
&
Weighting
Averaging
d
1-d
u
B
x
A
x
*
* +
=
&
2
1
*
)
1(
A
d
dA
A
−
+
=
2
1
*
)
1(
B
d
dB
B
−
+
=
Where:
Step 1
Delta Power Electronics Center
Basic Control for Power Electronics
--8--
X
x
x
+
= ˆ
D
d
d
+
= ˆ
U
u
u
+
= ˆ
Add the disturbances at steady state.
¶ Ignore the high order.
0
=
+ BU
AX
d
U
B
B
X
A
A
u
B
x
A
x
s
ˆ
]
)
(
)
[(
ˆ
ˆ
ˆ
2
1
2
1
−
+
−
+
+
=
[
]
U
B
B
X
A
A
A
sI
d
x
u
)
(
)
(
)
(
ˆ
ˆ
2
1
2
1
1
0
ˆ
−
+
−
−
=
−
=
steady equations:
Output to Duty:
B
A
sI
u
x
d
1
0
ˆ
)
(
ˆ
ˆ
−
=
−
=
Output to Input:
¶ partial difference.
AC transfer functions:
2
1
)
1(
A
D
DA
A
−
+
=
2
1
)
1(
B
D
DB
B
−
+
=
where:
Step 2
1) Basic SSM(State
State--Space Method) (cont.)
Space Method) (cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--9--
We use Buck for example.
L
C R
M
D
Vin
L
C R
Vin
L
C R
Vin
0<=d<=Don
Don>
Delta Power Electronics Center
Basic Control for Power Electronics
--30--
Summary of Basic topology -Transfer function
2
2
1
1
/
1
ˆ
ˆ
)
(
o
o
zc
o
s
s
Q
s
s
Vin
d
v
s
Gvd
ω
ω
+
+
+
=
=
2
2
2
1
1
/
1
ˆ
ˆ
)
(
o
o
z
o
s
s
Q
s
s
R
Vin
d
i
s
Gid
ω
ω
+
+
+
=
=
2
2
1
1
/
1
ˆ
ˆ
)
(
o
o
zc
in
o
s
s
Q
s
s
D
v
v
s
Gvv
ω
ω
+
+
+
=
=
2
2
1
1
)
/
1(
ˆ
ˆ
)
(
o
o
zc
o
o
s
s
Q
s
s
sL
i
v
s
Zo
ω
ω
+
+
+
=
=
2
2
2
2
/
1
1
1
ˆ
ˆ
)
(
z
o
o
o
in
s
s
s
s
Q
D
R
i
v
s
Zin
+
+
+
=
=
ω
ω
C
zc
CR
s
1
=
)
(
1
2
C
z
R
R
C
s
+
=
LC
R
R
LC
R
C
o
1
)
(
≈
+
=
ω
R
L
R
L
CR
Q
o
C
o
1
1
1
1
ω
ω
≈
+
=
1
D
L
C
R
d
Ic ˆ
d
D
VD ˆ
RC
aiˆ
ciˆ
invˆ
ovˆ
Buck-type converter
Delta Power Electronics Center
Basic Control for Power Electronics
--31--
Summary of Basic topology -Transfer function(cont.)
2
2
2
1
1
)
/
1
)(
/
1(
'
ˆ
ˆ
)
(
o
o
zRHP
zc
o
s
s
Q
s
s
s
s
D
Vin
d
v
s
Gvd
ω
ω
+
+
−
+
=
=
2
2
3
2
1
1
/
1
'
2
ˆ
ˆ
)
(
o
o
Z
O
o
s
s
Q
s
s
RD
V
d
i
s
Gid
ω
ω
+
+
+
=
=
2
2
1
1
/
1
'
1
ˆ
ˆ
)
(
o
o
zc
in
o
s
s
Q
s
s
D
v
v
s
Gvv
ω
ω
+
+
+
=
=
2
2
1
1
)
/
1(
ˆ
ˆ
)
(
o
o
zc
o
o
s
s
Q
s
s
sL
i
v
s
Zo
ω
ω
+
+
+
=
=
3
2
2
2
/
1
1
1
'
ˆ
ˆ
)
(
p
o
o
o
in
s
s
s
s
Q
RD
i
v
s
Zin
+
+
+
=
=
ω
ω
C
zc
CR
s
1
=
L
R
D
szRHP
2'
=
LC
D
R
R
LC
R
D
C
o
'
)
(
'2
≈
+
=
ω
CR
R
R
C
Q
o
C
o
ω
ω
1
)
(
1
≈
+
=
Boost-type converter
)
(
1
3
R
R
C
s
C
P
+
=
CR
sZ
2
3 =
L
C
R
RC
d
Iinˆ
d
D
VD ˆ
−
in
vˆ
ovˆ
D
1
Delta Power Electronics Center
Basic Control for Power Electronics
--32--
3) DCM PWM Switch (cont.)
Vin
L
C
R
Buck
a
c
p
ia
ip
Active
Passive
ac
V
cp
V
ai
pi
+
−
+
−
d
1
d
Common
dTs
d1Ts d2Ts
L
V
V
o
in −
L
V o
−
in
V
in
V
o
V
Vcp
Vac
ip
ia
o
in
V
V
−
Delta Power Electronics Center
Basic Control for Power Electronics
--33--
3) DCM PWM Switch (cont.)
ac
s
a
v
Lf
d
i
2
2
=
p
ac
s
cp
i
v
Lf
d
v
2
2
2
=
d
i
i
pk
a
2
=
1
2 d
i
i
pk
p =
p
a
i
d
d
i
1
=
s
pk
ac
dT
i
L
v
=
s
pk
cp
T
d
i
L
v
1
=
ac
cp
v
d
d
v
1
=
s
ac
pk
dT
L
v
i
=
1
2
d
i
i
p
pk =
ac
p
s
v
i
d
Lf
d
2
1 =
dTs
d1Ts d2Ts
L
V
V
o
in −
L
V o
−
in
V
in
V
o
V
Vcp
Vac
ip
ia
o
in
V
V
−
Active
Passive
ac
V
cp
V
ai
pi
+
−
+
−
d
1
d
Common
Delta Power Electronics Center
Basic Control for Power Electronics
--34--
3) DCM PWM Switch (cont.)
ac
s
a
v
Lf
d
i
2
2
=
p
ac
s
cp
i
v
Lf
d
v
2
2
2
=
e
s
a
ac
R
d
Lf
i
v
=
=
2
2
e
e
ac
p
cp
P
R
v
i
v
=
=
2
+
−
+
−
e
R
eP
ac
V
cp
V
ai
pi
Loss-Free Resistor (LFR)
Active
Passive
ac
V
cp
V
ai
pi
+
−
+
−
d
1
d
Common
Delta Power Electronics Center
Basic Control for Power Electronics
--35--
ac
s
a
v
Lf
d
i
2
2
=
p
ac
s
cp
i
v
Lf
d
v
2
2
2
=
3) DCM PWM Switch (cont.)
p
p
p
cp
cp
cp
ac
ac
ac
a
a
a
i
I
i
v
V
v
v
V
v
i
I
i
d
D
d
ˆ
ˆ
ˆ
ˆ
ˆ
+
=
+
=
+
=
+
=
+
=
ac
s
a
V
Lf
D
I
2
2
=
d
k
v
g
i
i
ac
i
a
ˆ
ˆ
ˆ
+
=
p
ac
s
cp
I
V
Lf
D
V
2
2
2
=
cp
o
o
ac
f
p
v
g
d
k
v
g
i
ˆ
ˆ
ˆ
ˆ
−
+
=
ac
a
s
i
V
I
Lf
D
g
=
= 2
2
D
I
Lf
DV
k
a
s
ac
i
2
=
=
ac
p
cp
s
ac
f
V
I
V
Lf
V
D
g
2
1
2
=
=
D
I
V
Lf
DV
k
p
cp
s
ac
o
2
1
2
=
=
cp
p
o
V
I
g =
Delta Power Electronics Center
Basic Control for Power Electronics
--36--
3) DCM PWM Switch (cont.) – BUCK
d
k
v
g
i
i
ac
i
a
ˆ
ˆ
ˆ
+
=
cp
o
o
ac
f
p
v
g
d
k
v
g
i
ˆ
ˆ
ˆ
ˆ
−
+
=
Active
Passive
ap
vˆ
cp
vˆ
Common
ig
d
ki ˆ
+
−
+
−
o
g
ac
fv
g ˆ
d
ko ˆ
piˆ
Delta Power Electronics Center
Basic Control for Power Electronics
--37--
Vin
L
C
R
buck
a
c
p
ia
ic
3) DCM PWM Switch (cont.) – BUCK
Active
Passive
ap
vˆ
cp
vˆ
Common
ig
d
kiˆ
+
−
+
−
og
ac
fv
g ˆ
d
koˆ
piˆ
A
Passive
cp
vˆ
C
ig
d
ki ˆ
+
−
og
ac
fv
g ˆ
d
koˆ
piˆ
L
C
R
invˆ
+
Rc
Rc
Delta Power Electronics Center
Basic Control for Power Electronics
--38--
A
ig
d
ki ˆ
og
ac
fv
g ˆ
d
koˆ
L
C
R
invˆ
+
P
C
3) DCM PWM Switch (cont.) – BUCK
)
1(
2
M
R
M
V
V
I
V
I
g
o
in
in
ac
a
i
−
=
−
=
=
DR
M
V
D
I
D
I
k
o
in
a
i
2
2
2
=
=
=
R
M
V
V
I
I
V
I
g
o
in
in
o
ac
p
f
2
)
(
2
2
=
−
−
=
=
DR
M
V
D
I
I
D
I
k
o
in
o
p
o
)
1(
2
)
(
2
2
−
=
−
=
=
R
M
V
I
I
V
I
g
o
in
o
cp
p
o
−
=
−
=
=
1
o
in
in
o
I
I
V
V
M
=
=
in
a
I
I =
o
in
ac
V
V
V
−
=
M
K
M
D
−
=
1
R
Lf
K
s
2
=
Rc
Delta Power Electronics Center
Basic Control for Power Electronics
--39--
A
ig
d
ki ˆ
og
ac
fv
g ˆ
d
koˆ
L
C
R
invˆ
+
P
C
3) DCM PWM Switch (cont.) – BUCK
r
f
o
i
g
g
g
r
+
+
=
1
L
C
R
Rc
Rc
d
Kd ˆ
o
i
d
k
k
k
+
=
C
L
L
C
L
C
L
L
d
vd
Z
R
Z
Z
R
Z
R
Z
r
K
s
G
||
||
)]
||
(
||
[
)
(
+
+
=
Delta Power Electronics Center
Basic Control for Power Electronics
--40--
3) DCM PWM Switch (cont.) – BUCK
)
1
)(
1(
1
)
(
2
1
p
p
zc
vd
vd
s
s
s
K
s
G
ω
ω
ω
+
+
+
=
π
π
ω
ω
π
ω
ω
ω
s
p
p
s
p
p
c
zc
f
f
M
L
R
M
M
RC
C
R
≥
=
≥
−
=
−
−
=
=
2
1
)
1(
1
2
1
1
2
2
2
1
fp1
fzc
fp2
fp2>> fp1
Therefore, DCM is similar to single-pole system.
Delta Power Electronics Center
Basic Control for Power Electronics
--41--
Summary
1. The Steady equations and AC transferring functions can be deduced by SSM
& PWM Switching Method.
2. SSM can be used in DC/DC, PFC and so on to analyze.
3 . SSM deduction is lightly complicated and boring.
4. SSM can be deduced by MATHEMATICA
MATHEMATICA software(symbol calculation).
5. PWM Switching Method can be integrated into Pspice-like simulations.
Delta Power Electronics Center
Basic Control for Power Electronics
--42--
Any comments & suggestions?
Delta Power Electronics Center
Basic Control for Power Electronics
--43--
Voltage Loop Design
Delta Power Electronics Center
Basic Control for Power Electronics
--44--
Voltage Loop Design
)
(
)
(
)
(
)
(
s
F
s
G
H
s
G
s
G
M
C
dv
L
⋅
⋅
⋅
=
Gdv(s)
GC(s)
H
)
(
ˆ s
vo
_
+
)
(
ˆ
s
vref
FM(s)
)
(
ˆ s
vi
)
(
ˆ s
vG
dˆ
GL(s)
eˆ
Gdv(s): transfer function
H : voltage divider
FM(s) : saw-wave gain.
GC(s) : added compensation.
Delta Power Electronics Center
Basic Control for Power Electronics
--45--
K
e
∆
K
Ts
e
Ts
d
=
∆
⋅
∆
Voltage Loop Design –parameters Fm(s)
)
(
)
(
)
(
)
(
s
F
s
G
H
s
G
s
G
M
C
dv
L
⋅
⋅
⋅
=
For saw-waveform
K
e
d
s
FM
1
)
(
=
∆
∆
=
dTs
∆
e
∆
dTs
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--46--
Basic regulators
-
+
Z2
Z1
IN
OUT
)
(1
)
(
2
)
(
s
Z
s
Z
s
F
−
=
)
(
:
)
(
lg
20
)
(
:
)
(
)
(
)
(
ϖ
ϕ
ϖ
ϖ
ϖ
ϖ
ϖ
ϕ
Phase
A
j
L
Amplitude
e
A
j
F
j
=
=
Voltage Loop Design –parameters Gc(s)
Delta Power Electronics Center
Basic Control for Power Electronics
--47--
-
+
R2
R1
IN
OUT
-
+
R1
IN
OUT
-
+
R1
IN
OUT
C1
C1
P
I
D
1
2
)
(
R
R
s
GC
−
=
1
1
1
)
(
C
sR
s
GC
−
=
1
1
)
(
C
sR
s
GC
−
=
20lgK1
w
L(w)/dB
w
P(w)
0
0
-20db/dec
w
L(w)/dB
w
P(w)
0
0
-90
0
20db/dec
w
L(w)/dB
w
P(w)
90
0
P
I
D
Voltage Loop Design –parameters Gc(s)(cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--48--
-
+
R2
IN
OUT
Cz
R1
Cp
)
1
(
1
)
(
2
1
1
+
+
=
τ
τ
s
s
s
K
s
F
)
(
1
2
1
Z
P
C
C
R
K
+
=
where
Z
C
R 1
1
1
=
τ
e
C
R 1
2
1
=
τ
p
z
p
z
e
C
C
C
C
C
+
=
common regulator
Voltage Loop Design –parameters Gc(s)(cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--49--
-
+
R2
IN
OUT
Cz
R1
Cp
When Cp >> Cz (10 times is enough)
Z
e
C
C
≅
s
K
s
s
s
K
s
F
1
)
1
(
1
)
(
1
2
1
1
≅
+
+
=
τ
τ
The regulator equals Integration regulator.
-
+
R2
IN
OUT
Cp
I
2
1
τ
τ
=
Voltage Loop Design –parameters Gc(s)(cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--50--
When Cp << Cz (10 times is enough)
p
e
C
C
≅
)
1
(
1
)
(
2
1
1
+
+
=
τ
τ
s
s
s
K
s
F
Z
C
R 1
1
1
=
τ
p
C
R 1
2
1
=
τ
Zero
Pole
Properties:
� Zero is determined by Cz & R1, independent on Cp & R2.
� Pole is determined by Cp & R1, independent on Cz & R2.
� Gain K1 is determined by Cz & Cp & R2, independent on R1.
Lead-Lag
-
+
R2
IN
OUT
Cz
R1
Cp
Voltage Loop Design –parameters Gc(s)(cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--51--
)
1
(
1
)
(
2
1
1
+
+
=
τ
τ
s
s
s
K
s
F
Voltage Loop Design –parameters Gc(s)(cont.)
1
1
τ
2
1
τ
-900
-1
-1
)
(ω
M
)
(ω
Φ
ω
ω
Delta Power Electronics Center
Basic Control for Power Electronics
--52--
Voltage Loop Design –compensation consideration
Gdv(s)
GC(s)
H
)
(
ˆ s
vo
_
+
0
)
(
ˆ
=
s
v ref
FM(s)
dˆ
GL(s)
eˆ
[
]
)
(
)
(
)
(
)
(
s
G
s
F
H
s
G
s
G
C
M
dv
L
⋅
⋅
⋅
=
Initial system compensation
)
(
)
(
)
(
'
s
G
s
G
s
G
C
dv
L
⋅
=
)
(
)
(
)
(
'
s
F
H
s
G
s
G
M
dv
dv
⋅
⋅
=
Delta Power Electronics Center
Basic Control for Power Electronics
--53--
How to judge the stability of the system?
How to judge the stability of the system?
- frequency domain analysis
•
Hurwitz Criterion
•
Nyquist Criterion
•
Bode plot
•
Nichols Chart
Delta Power Electronics Center
Basic Control for Power Electronics
--54--
Hurwitz
Hurwitz Criterion
Criterion
Standard format:
0
a
s
a
...
s
a
s
a
s
a
n
1
n
2
n
2
1
n
1
n
0
=
+
+
+
+
+
−
−
−
Conditions:
0
...
0
0
0
a
n
2
1
0
>
>
>
>
∆
∆
∆
system is stable
n
3
4
5
6
7
1
2
3
4
5
0
1
2
3
0
1
n
a
0
0
0
0
0
...
...
...
...
...
...
...
a
a
a
a
a
...
a
a
a
a
a
...
0
a
a
a
a
...
0
0
0
a
a
=
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--55--
-1
X
jY
γ
g
K
1
Stability margins:
Stability margins:
γ : 450 ~ 600
g
K
> 6 dB
Bode Plot
Nyquist Criterion
ω
ω
GH
lg
20
)
(ω
ϕ
-900
-1800
0dB
γ
g
K
1
Nichols Chart
)
(ω
ϕ
GH
lg
20
-1800
-900
-2700
0
+
-
γ
g
K
1
"s" domain Criterions
Criterions
Delta Power Electronics Center
Basic Control for Power Electronics
--56--
The requirements of system stability:
1. In order to keep the stability of system,
p(w) must be left about 60degree
when M(w)=0.
2. Sometimes the system is steady,
However, for some other characteristics,
Such as FAST, ANTI-Disturbance etc,
the regulator has to be added.
20lgK
1/t1
1/t2
-180
0
-90
0
0
0
Voltage Loop Design –purpose
ω
ω
)
(ω
M
)
(
c
P ω
)
(ω
Φ
Delta Power Electronics Center
Basic Control for Power Electronics
--57--
Voltage Loop Design –purpose(cont.)
Delta Power Electronics Center
Basic Control for Power Electronics
--58--
Voltage Loop Design –compensation consideration
)
(
'
s
Gdv
-900
-1800
-2
-00
-2700
Critical Zone:
1) Phase changes 0o ~ -180o
o
ω
c
ω
ω
ω
)
(ω
M
)
(ω
Φ
Delta Power Electronics Center
Basic Control for Power Electronics
--59--
Voltage Loop Design –compensation consideration (cont.)
fo is high enough
-900
-1800
-00
-2700
-2
-3
-1
-1
o
ω
c
ω
ω
ω
)
(
c
P ω
)
(ω
M
)
(ω
Φ
)
(
0
180
ω
M
Delta Power Electronics Center
Basic Control for Power Electronics
--60--
Voltage Loop Design –compensation consideration (cont.)
fo is NOT high enough
-900
-1800
-00
-2700
-1
-2
-1
-1
-3
900
)
(
c
P ω
o
ω
c
ω
)
(ω
M
ω
ω
)
(ω
Φ
Delta Power Electronics Center
Basic Control for Power Electronics
--61--
Delta Power Electronics Center
Basic Control for Power Electronics
--62--
Ggv(s)
Gdv(s)
GC(s)
H
)
(
ˆ s
vo
_
+
0
)
(
ˆ
=
s
v ref
FM(s)
0
)
(
ˆ
=
s
vi
)
(
ˆ
s
vG
dˆ
GL(s)
eˆ
)
(
ˆ
)
(
)
(
ˆ
)
(
ˆ
)
(
)
(
ˆ
)
(
ˆ
s
v
s
F
s
G
H
d
s
G
d
s
G
s
v
s
v
o
M
C
dv
gv
G
o
⋅
⋅
⋅
=
⋅
−
⋅
=
)
(
ˆ
)
(
)
(
)
(
ˆ
)
(
ˆ
s
v
s
G
s
G
s
v
s
v
o
L
gv
G
o
⋅
−
⋅
=
)
(
1
)
(
)
(
s
G
s
G
s
G
L
gv
T
gv
+
=
Voltage Loop Design – Others
}
Audio susceptibility
)
(
)
(
)
(
)
(
s
G
s
F
s
G
H
s
G
dv
M
C
L
⋅
⋅
⋅
=
Delta Power Electronics Center
Basic Control for Power Electronics
--63--
L
C
R
ovˆ
oiˆ
Voltage Loop Design – Others
Output impendence
)
(
1
)
(
)
(
s
G
s
Z
s
Z
L
o
T
o
+
=
R
1/sc
sL
1+GL(s)
Zo(s)
)
(s
Z T
o
)
(s
Zo
Delta Power Electronics Center
Basic Control for Power Electronics
--64--
Voltage Loop Design – by matlab
Ltiview
Delta Power Electronics Center
Basic Control for Power Electronics
--65--
Voltage Loop Design – by matlab
Using Rltool and Ltiview tools to simulate.
% output Vo=12V Ro=12V/60A=0.2 Ro=12V/0.1A=120
Vin=40;Lo=60e-6; Co=2000e-6; Resr=0.1;
% light load
Ro=120;
szc=1/Co/Resr; sz2=1/Co/(Ro+Resr);
wo=sqrt(Ro/Lo/Co/(Ro+Resr)); Q=1/wo/(Co*Resr+Lo/Ro);
num=Vin*[1/szc 1]; den=[1/wo/wo 1/Q/wo 1];%s^2 s 1
Gvd1=tf(num,den); close1=feedback(Gvd1,1);
% heavy load
Ro=0.2;
szc=1/Co/Resr; sz2=1/Co/(Ro+Resr);
wo=sqrt(Ro/Lo/Co/(Ro+Resr)); Q=1/wo/(Co*Resr+Lo/Ro);
num=Vin*[1/szc 1]; den=[1/wo/wo 1/Q/wo 1];%s^2 s 1
Gvd2=tf(num,den);
close2=feedback(Gvd2,1);
figure(1);
step(Gvd1);hold on; step(Gvd2);
figure(2);
step(close1);hold on; step(close2);
Ro=120
Ro=0.2
Delta Power Electronics Center
Basic Control for Power Electronics
--66--
Voltage Loop Design – by matlab
rltool
Delta Power Electronics Center
Basic Control for Power Electronics
--67--
Ro=120
Ro=0.2
Voltage Loop Design – by matlab
Unit feedback
with Gcv
Delta Power Electronics Center
Basic Control for Power Electronics
--68--
Summary
1) GL is important to design.
2) Matlab is helpful to design loop.
3) Other disturbance is attenuated by 1/(1+GL).
Delta Power Electronics Center
Basic Control for Power Electronics
--69--
Any comments & suggestions?
Delta Power Electronics Center
Basic Control for Power Electronics
--70--
Current Loop Design
� Peak current mode
� Average current mode
Delta Power Electronics Center
Basic Control for Power Electronics
--71--
What’s difference between Average & Peak Current?
•Worse Noise immunity
•Slope compensation
•Subharmonic
Oscillation
•Slower response than
the counterpart.
•Complicated
Disadvantage
•Faster response
••Simple control
Simple control
•Good noise
immunity
•Anti disturbance
Advantage
Peak Current
Peak Current
Average Current
Average Current
Delta Power Electronics Center
Basic Control for Power Electronics
--72--
Peak current mode
1) Ramp compensation.
2) Sub-harmonic.
Delta Power Electronics Center
Basic Control for Power Electronics
--73--
Without compensation when Duty>50%
1
2
1
1
2
0
1
)
(
m
m
I
m
m
I
I
>
∞
→
∆
→
∆
−
=
∆
Peak current mode
0I
∆
1I
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--74--
Chaotic phenomenon when Duty>50%
W/O Compensation
Duty
kI
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--75--
With compensation when Duty>50%
)
(
1
2
0
1
c
c
m
m
m
m
I
I
+
+
∆
−
=
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--76--
Chaotic phenomenon when Duty>50%
W/ Compensation
Duty
kI
∆
Delta Power Electronics Center
Basic Control for Power Electronics
--77--
Peak current mode
M
id
L
F
s
G
Rs
s
Gi
⋅
⋅
=
)
(
)
(
Gid(s)
)
(
ˆ s
iL
_
+
ea
vˆ
FM
dˆ
GiL(s)
)
(
ˆ s
vo
Voltage
loop
Rs
Gvd(s)
Delta Power Electronics Center
Basic Control for Power Electronics
--78--
Peak current mode –parameters Fm(s)
Fm is CONSTANT.
Sn
Se
S
n
C
S
n
e
M
T
S
m
T
S
S
F
1
)
(
1
=
+
=
Delta Power Electronics Center
Basic Control for Power Electronics
--79--
ea
vˆ
)
(
1
)
(
)
(
1
)
(
)
(
'
_
s
Gi
s
G
F
F
s
G
Rs
s
G
F
s
G
L
vd
M
M
id
vd
M
ea
v
+
⋅
=
⋅
⋅
+
⋅
=
Peak current mode - design
M
id
L
F
s
He
s
G
Rs
s
Ti
⋅
⋅
⋅
=
)
(
)
(
)
(
Gid(s)
)
(
ˆ s
io
_
+
FM
dˆ
GiL(s)
)
(
ˆ s
vo
Voltage
loop
Rs
Gvd(s)
Delta Power Electronics Center
Basic Control for Power Electronics
--80--
)
(
1
)
(
)
(
'
_
s
Gi
s
G
s
G
L
vd
ea
v
+
=
Peak current mode - design
in
o
V
sL
R
sC
R
sC
d
v
+
=
1
1
ˆ
ˆ
sL
R
sC
V
d
i
in
o
+
=
1
ˆ
ˆ
M
id
vd
M
ea
v
F
s
G
s
G
F
s
G
⋅
⋅
⋅
=
)
(
Re
)
(
)
(
'
_
Considering GiL(s)>>1, f < fs/2
1
1
)
||
1
(
1
)
(
'
_
+
=
=
sCR
R
Rs
R
sC
Rs
s
G
ea
v}
Delta Power Electronics Center
Basic Control for Power Electronics
--81--
Peak current mode - design
1
1
)
||
1
(
1
ˆ
ˆ
)
(
'
_
+
=
=
=
sCR
R
Rs
R
sC
Rs
v
v
s
G
ea
o
ea
v
L disappears, Single-pole system.
C
R
Rs
vea
ˆ
RC
Delta Power Electronics Center
Basic Control for Power Electronics
--82--
-900
-1800
-00
-1
-2
-1
-1
Peak current mode - design
o
ω
c
ω
ω
ω
)
(ω
M
)
(ω
Φ
Delta Power Electronics Center
Basic Control for Power Electronics
--83--
Summary
1) Ramp compensation is necessary & important when D>50%.
2) Inductor is like one current-source in peak current mode.
3) System is only one single-pole.
Delta Power Electronics Center
Basic Control for Power Electronics
--84--
Any comments & suggestions?
Delta Power Electronics Center
Basic Control for Power Electronics
--85--
Average current mode
Delta Power Electronics Center
Basic Control for Power Electronics
--86--
Gid(s)
He(s)
)
(
ˆ s
io
_
+
FM
dˆ
GiL(s)
)
(
ˆ s
vo
Rs
)
(
)
(
)
(
)
(
s
G
F
s
He
s
G
Rs
s
Gi
ca
M
id
L
⋅
⋅
⋅
⋅
=
Gvd(s)
GCA
Average current mode
Voltage
loop
Delta Power Electronics Center
Basic Control for Power Electronics
--87--
Average current mode – He(s)
2
2
1
)
(
n
Z
n
s
Q
s
s
He
ω
ω
+
+
≈
s
n
T
π
ω ≈
π
2
−
≈
Z
Q
100
1 .10 3
1 .10 4
1 .10 5
100
90
80
70
60
50
40
30
20
10
0
Phase vs frequency
0.9
−
90
−
P f
( )
fs
2
fs
200
f
2 . 10 4
4 . 10 4
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
Magnitude vs frequency
3.922
2.03
10
4
−
×
M
f
(
)
fs
2
fs
200
f
Delta Power Electronics Center
Basic Control for Power Electronics
--88--
Average current mode -GEA
S
e
V
N
M
T
S
S
F
)
(
1
+
=
S
e
V
N
M
T
S
S
F
)
(
1
+
=
S
S
e
S
e
V
N
M
V
T
S
T
S
S
F
1
1
)
(
1
=
≈
+
=
P
PI
Lead-Lag
Delta Power Electronics Center
Basic Control for Power Electronics
--89--
Average current mode –GEA(cont.)
M(w)
P
PI
Lead-lag
Attenuated
Const
High gain
Lead-Lag
No attenuation
Const
High gain
PI
No attenuation
Const
Low gain
P
High Freq
Mid Freq
Low Freq
Delta Power Electronics Center
Basic Control for Power Electronics
--90--
2
2
2
1
1
/
1
ˆ
ˆ
)
(
o
o
z
o
s
s
Q
s
s
R
Vin
d
i
s
Gid
ω
ω
+
+
+
=
=
Average current mode –Gid(s)
sL
V
d
i
s
Gid
in
o =
= ˆ
ˆ
)
('
Simplified:
1
D
L
C
R
d
Icˆ
d
D
VD ˆ
RC
aiˆ
ciˆ
invˆ
ovˆ
d
V
D
d
D
V
in
in
ˆ
ˆ
=
⋅
Buck -type
Delta Power Electronics Center
Basic Control for Power Electronics
--91--
2
2
3
2
1
1
/
1
'
2
ˆ
ˆ
)
(
o
o
Z
O
o
s
s
Q
s
s
RD
V
d
i
s
Gid
ω
ω
+
+
+
=
=
Average current mode –Gid(s)
0
1 ≈
B
sC
@high frequency
L
C
R
RC
d
Iinˆ
d
D
VO ˆ
−
invˆ
ovˆ
Liˆ
D
1
sL
V
d
i
s
Gid
O
o =
= ˆ
ˆ
)
('
Simplified:
Boost -type
Delta Power Electronics Center
Basic Control for Power Electronics
--92--
Average current mode –current compensation
To avoid sub-harmonic. Sn=Se
fs
V
Gca
Rs
L
Vo
S ⋅
=
⋅
⋅
1
)
(
=
s
He
S
M
V
F
1
=
)
(
)
(
)
(
)
(
s
G
F
s
He
s
G
Rs
s
Gi
ca
M
id
L
⋅
⋅
⋅
⋅
=
Rs
Vo
fs
V
L
Gca
S
⋅
⋅
⋅
=
1
1
1
)
(
=
⋅
⋅
=
⋅
⋅
⋅
⋅
⋅
⋅
⋅
=
sL
V
fs
V
Rs
V
fs
V
L
V
sL
V
Rs
s
Gi
O
in
O
S
S
in
L
1
2
=
⋅
⋅
L
f
V
fs
V
iC
O
in
π
LD
fs
L
V
fs
V
f
O
in
iC
π
π
2
2
=
⋅
⋅
=
BUCK
max
Cross frequency fic
Delta Power Electronics Center
Basic Control for Power Electronics
--93--
Average current mode –current compensation
To avoid sub-harmonic. Sn=Se
fs
V
Gca
Rs
L
Vo
S ⋅
=
⋅
⋅
1
)
(
=
s
He
S
M
V
F
1
=
)
(
)
(
)
(
)
(
s
G
F
s
He
s
G
Rs
s
Gi
ca
M
id
L
⋅
⋅
⋅
⋅
=
Rs
Vo
fs
V
L
Gca
S
⋅
⋅
⋅
=
1
1
1
)
(
=
=
⋅
⋅
⋅
⋅
⋅
⋅
⋅
=
sL
fs
Rs
V
fs
V
L
V
sL
V
Rs
s
Gi
O
S
S
O
L
1
2
=
L
f
fs
iC
π
L
fs
fiC
π
2
=
Cross frequency fic
BOOST
max
Delta Power Electronics Center
Basic Control for Power Electronics
--94--
Design Summary
1) critical fic is determined.
2) High dc gain
Integration is place at zero frequency.
3) Stability
One Zero is placed at fic/4.
4) High frequency noise.
One Pole is placed at fs/2 to attenuate.
Delta Power Electronics Center
Basic Control for Power Electronics
--95--
Any comments & suggestions?
Delta Power Electronics Center
Basic Control for Power Electronics
--96--
Thanks for your attention!